棒の引っかきによる音波を用いたインタラクション取得手法の検討

林 吉経* 尾崎 亮太* 上堀 まい*† 岩本 涼‡ 菊地 萌花‡ 石黒 成紀‡ 伊藤 雄一*

概要. 本研究では、棒が物体表面を引っかく際に発生する音波を利用して、棒によるインタラクションを取得する音響センシングを用いた手法を提案する。音響センシングは振動する物体全般に適用可能であり、材質や形状など様々な要因が音響の伝搬に与える影響を利用することで、物体の位置や運動といった多元的な物体情報やインタラクションの取得に有効であると考えられる。本研究で提案する機構は、2本の爪と2列の突起列からなり、これらの爪は圧電素子を介して棒の先端に取り付ける。突起列は等間隔に配置し、列間には位相差を設ける。物体移動時に爪が突起列を引っかいて発生する音波を解析し、周波数の異なる音波の発生順番から移動方向を、音波の発生回数から移動量を推定する。本機構は2物体が一定の軸をなして移動する任意の面に適用可能であり、ジョイスティックやボタンなどのセンシング手法としての活用に加え、ドアノブなどへの適用によって日常動作をインタラクションとして利用できる可能性がある。

1 はじめに

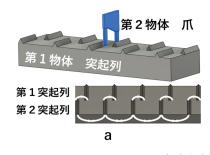
人の周囲に存在する多様な対象に計算機能を組み込むスマートホームなどの試みは、計算機能によって空間の中における人の体験を向上させることを目的としている [7]. このような取り組みにおいて中心的な役割を果たすのは、ユーザと物理世界とのインタラクションを認識することである。コンピュータがユーザの動作を理解し、「ユーザのトイレへの接近に合わせて自動で蓋を開く」といったように文脈に応じて適切に応答することが重要である。

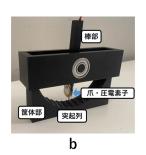
インタラクションの取得手法は2つに分類できる[5].一つは、ボタンやノブなど専用の入力装置による明示的な手法である。もう一つは、扉の開閉や道具の使用といった日常動作そのものをセンシングし、暗黙的な入力とする手法である。この手法では、ユーザは無意識的に計算機能の恩恵を享受できるが、対象とする動作や部品によりデバイスの特別な設計

Copyright is held by the author(s). This paper is non-refereed and non-archival. Hence it may later appear in any journals, conferences, symposia, etc.

- * 青山学院大学
- † 日本学術振興会 特別研究員
- ‡ DAIKEN 株式会社

や, センサの選定・実装が必要となり, 導入が難しく維持管理コストが増大するという問題がある.


そこで、多様なインタラクションを単一のシステムで識別する研究がなされている [2, 6]. 特に、動作により発生する音波や磁歪といった物理信号を間接的に利用することで複数の動作を識別することが可能である [3]. 中でも、物体を伝う音波を用いるセンシング手法は、物体の動きに伴う音波以外にも、材質や形状が信号を変化させるため、多元的な情報取得に有用であると考えられる [1, 4].


そこで本研究では、棒の先端に圧電素子を介して取り付けた2つの爪が別物体の突起列を引っかくことで、異なる2つの周波数の音波を発生させる機構を構築する.機構により発生した音波を周波数解析し、その発生順番と回数から引っかく運動の方向及び量を推定することで、インタラクションとして取得する手法を提案する.

2 提案手法

2.1 音波発生機構・動作原理

提案機構は, 突起と突起を引っかく爪によって音波を発生させる. 図 1(a) に音波発生機構の構造を示す. 第 1 物体には突起列を, 第 2 物体には爪を配

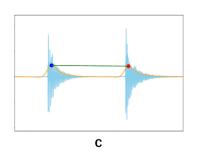


図 1. (a) 音波発生機構 (b) プロトタイプ (c) 波形と解析イメージの例

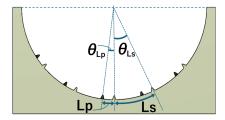


図 2. パラメータの定義

置する.物体の移動方向に対し垂直に2本の爪が並び,突起は移動方向に対して2つの列をなして配置する.2つの突起列にはそれぞれ固有の間隔で突起を配置し,両突起列には位相差を設ける.一方の爪は第1突起列を,もう一方の爪は第2突起列を引っかく.2物体が相対移動することで爪が突起を引っかき,爪は長さに固有の周波数で振動する.位相差を突起間隔よりも小さくすることで,2本の爪による音波が発生タイミングの近いペアとして発生する.周波数の異なる音波の発生順番から棒の移動方向を,音波の発生回数から移動量を推定する.

図1(b) に実際に作成したプロトタイプを示す.プロトタイプでは,突起列を第1物体(筐体部)に,爪を第2物体(棒部)に圧電素子を介して取り付ける.棒で物体表面を引っかくインタラクションを機構が発生させる音波から推定し,取得する.筐体部である円弧上に配置した突起列と棒部を3Dプリンタにより作成し,爪をオルゴールの櫛歯を加工して作成した.音波取得のため圧電素子(7BB-20-6)を瞬間接着剤で爪に張り付けた.音波はオーディオインタフェース(US-4x4)を介してPCに送信する.

2.2 音波解析手法

図1(c) に波形と解析イメージの例を示す. 爪が突起を引っかく際に発生する音波は初めに振幅のピークを迎え, 減衰する. よって爪の引っかきのタイミングは音波の振幅のピークとして検知することができる. ピーク検知のため, 振幅の絶対値をとり, 移動平均を適用することで波形を平滑化する. 平滑化した波形の極大点を音波のピークとして検知する.

あるピークを検知してから、定めた時間以内にもう一つピークが検知されたとき、それをペアのピークとする.ペア検知の閾値とする時間は突起列の間隔や想定する動作の速度に応じて変更する.ピークの近傍で高速フーリエ変換を行い、得られた周波数成分の最大値をピークの周波数とする.ピークの周波数を大小比較することで移動方向を決定する.

3 パラメータの最適化

図 2 にプロトタイプのパラメータを示す.突起列の間隔を Ls,位相差を Lp とし,間隔 Ls を決める角度を θ_{Ls} ,位相差 Lp を決める角度を θ_{Lp} とする.提案機構によって異なる速さの物体移動を検知し

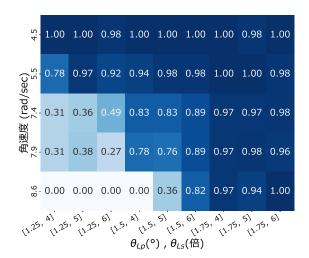


図 3. パラメータの組み合わせに対する再現率

 θ_{Lp} を 1.25 °, 1.5 °, 1.75 °, θ_{Ls} を θ_{Lp} の 4 倍, 5 倍, 6 倍に変化させ,9 通りの組み合わせで実験した.棒部をサーボモータにより一定の速度で動かし,録音と解析を行った.9 個のペアを通過する運動を 10 試行し,ペアの再現率を求めた.速度は電圧により 1 V ごとに制御し,速度は最小 258 °/sec から最大 493 °/sec とした.電圧が 4.5 V 未満では突起と爪の接触による抵抗でモータの回転が停止してしまったため,4.5 V を下限とした.

図 3 に各パラメータの組み合わせに対する再現率を示す.移動速度が 258 °/sec の時, $\theta_{Lp}=1.25$ °, $\theta_{Lp}=4$ 倍の条件で回転移動を 5 ° ごとに 100 %の再現率で検知できた.移動速度が 493 °/sec の時, $\theta_{Lp}=1.75$ °, $\theta_{Lp}=4$ 倍の条件で回転移動を 7.00 ° ごとに 97 %の再現率で検知できた.

 θ_{Lp} , θ_{Ls} はそれぞれ小さい値であるとき, 移動速度は大きいときに、検知精度の低下を確認した.

4 まとめ・今後の展望

本稿では、爪と突起により音波を発生させることで、引っかきによるインタラクションを取得可能な手法を提案し、突起の最適な配置を検証した.本手法はスライダーやジョイスティックとしての利用や、カーソルなどのオブジェクト操作が可能であり、デモではジョイスティックを展示する.今後は小型化や、ドアノブなどの部品に組み込むことで日常動作による個人識別を目指す.また摩擦そのものによるでは、摩擦のインタラクションへの拡張を目指す.加えて、音波が発生するという機構の特性を活用し、ユーザの入力と同時に音波をフィードバックとして活用する方法についても検討する.

斜辞

本研究は JSPS 科研費 JP24H00745 の助成を受けたものです.

参考文献

- T. Amesaka, H. Watanabe, M. Sugimoto, and B. Shizuki. Gesture Recognition Method Using Acoustic Sensing on Usual Garment. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 6(2):41–1, 2022.
- [2] G. Laput, W. S. Lasecki, J. Wiese, R. Xiao, J. P. Bigham, and C. Harrison. Zensors: Adaptive, rapidly deployable, human-intelligent sensor feeds. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1935–1944, 2015.
- [3] G. Laput, Y. Zhang, and C. Harrison. Synthetic sensors: Towards general-purpose sensing. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 3986–3999, 2017.
- [4] V. Savage, A. Head, B. Hartmann, D. B. Goldman, G. Mysore, and W. Li. Lamello: Passive acoustic sensing for tangible input components. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1277–1280, 2015.
- [5] A. Schmidt. Implicit human computer interaction through context. *Personal technologies*, 4(2):191–199, 2000.
- [6] A. Tang, S. Greenberg, and S. Fels. Exploring video streams using slit-tear visualizations. In Proceedings of the working conference on Advanced visual interfaces, pp. 191–198, 2008.
- [7] M. Weiser and J. S. Brown. The coming age of calm technology. In *Beyond calculation: The next fifty years of computing*, pp. 75–85. Springer, 1997.